A bipartite graph is called bipancyclic if its subgraphs include cycles of all possible lengths. For example, a bipancyclic graph on $2n$ vertices will contain cycles of lengths $4, 6, \ldots, 2n - 2, 2n$.

Suppose we have a bipancyclic graph on v vertices. It must contain a Hamilton cycle, so the graph could be represented as a cycle of length v together with some other edges which we shall call chords.

A bipancyclic graph is uniquely bipancyclic if it contains exactly one cycle of each possible length. We shall refer to such a graph as a UBPC graph.

In an earlier paper, we found all UBPC graphs with three or fewer chords. Such graphs exist of order 4, 8, 14 and 26. If a graph has four chords, then it will contain one Hamiltonian cycle, eight 1-chord cycles, and at least six two-chord cycles. With at least 15 cycles, a UBPC graph will have at least 32 vertices. So we have already found all UBPC graphs with 30 or fewer vertices. Moreover, we saw that no 3-chord UBPC graph has more than 30 vertices.

It follows, then, that the only possible 32-vertex UBPC graphs will have four chords; every pair of chords will give rise to exactly one cycle, and there will be no cycle containing three or four chords.

There are ten possible chord layouts; a computer analysis has been performed, and shows that no example exists with 30 points.