Approximation Algorithms for NP-Complete Problems

1. Performance ratios

2. Some polynomial approximation algorithms
 a. Vertex-Cover
 b. TSP
 c. Scheduling
 d. Set-Cover
 e. Maximum Set-Cover
 f. Independent-Set
 g. Subset-Sum
 h. 3-Coloring

3. Weighed Independent Set and Vertex Cover
1. Definitions

Definition 1 An approximation algorithm has approximation ratio $\rho(n)$, if for any input of size n one has:
\[
\max \left\{ \frac{C}{C^*}, \frac{C^*}{C} \right\} \leq \rho(n),
\]
where C and C^* are the costs of the approximated and the optimal solution, respectively.

An algorithm with approximation ratio ρ is sometimes called ρ-approximation algorithm.

Usually there is a trade-off between the running time of an algorithm and its approximation quality.

Definition 2 An approximation scheme for an optimization problem is an approximation algorithm that takes as input an instance of the problem and a number $\epsilon(n) > 0$ and returns a solution within the approximation rate $1 + \epsilon$.

An approximation scheme is called fully polynomial-time approx. scheme if it is an approximation scheme and its running time is polynomial both in $1/\epsilon$ and in size n of the input instance.
2a. The **Vertex-Cover** Problem

Instance: An undirected graph \(G = (V, E) \).

Problem: Find a vertex cover of minimum size.

Algorithm 1 \textsc{Approx-Vertex-Cover}(\(G\));

\[
\begin{align*}
C & := \emptyset \\
E' & := E \\
\text{while } E' \neq \emptyset \\
& \quad \text{do } C := C \cup \{u, v\} \quad /* \text{here } (u, v) \in E' */ \\
& \quad \quad E' := E' - \{\text{edges of } E' \text{ incident to } u \text{ or } v\} \\
\text{return } C
\end{align*}
\]

![Figure 1: \textsc{Approx-Vertex-Cover} in action](image)
Theorem 1 The **Approx-Vertex-Cover** is a polynomial-time 2-approximation algorithm.

Proof. The set of vertices C constructed by the algorithm is a vertex cover. Let C^* be a minimum vertex cover.

Let A be the set of edges that were picked by the algorithm. Then

$$|C| = 2 \cdot |A|.$$

Since the edges in A are independent,

$$|A| \leq |C^*|.$$

Therefore:

$$|C| \leq 2 \cdot |C^*|.$$
2b. The TSP Problem

Instance: A complete graph $G = (V, E)$ and a weight function $c : E \rightarrow \mathbb{R}^{\geq 0}$.

Problem: Find a Hamilton cycle in G of minimum weight.

For $A \subseteq E$ define

$$c(A) = \sum_{(u, v) \in A} c(u, v).$$

We assume the weights satisfy the triangle inequality:

$$c(u, v) \leq c(u, w) + c(w, v)$$

for all $u, v, w \in V$.

Remark 1 The TSP problem is NP-complete even under this assumption.
Algorithm 2 APPROX-TSP(\(G, c\));

1. Choose a vertex \(v \in V\).
2. Construct a minimum spanning tree \(T\) for \(G\) rooted in \(v\) (use, e.g., MST-PRIM algorithm).
3. Construct the pre-order traversal \(W\) of \(T\).
4. Construct a Hamilton cycle that visits the vertices in order \(W\).

Figure 2: APPROX-TSP in action
Theorem 2 The **Approx-TSP** is a polynomial-time 2-approx. algorithm for the TSP problem with the triangle inequality.

Proof. Let H^* be an optimal Hamilton cycle. We construct a cycle H with $c(H) \leq 2 \cdot c(H^*)$.

Since T is a minimal spanning tree, one has:

$$c(T) \leq c(H^*).$$

We construct a list L of vertices taken in the same order as in the **MST-Prim** algorithm and get a walk W around T.

Since W goes through every edge twice, we get:

$$c(W) = 2 \cdot c(T),$$

which implies

$$c(W) \leq 2 \cdot c(H^*).$$

The walk W is, however, not Hamiltonian.

We go through the list L and delete from W the vertices which have already been visited.

This way we obtain a Hamilton cycle H. The triangle inequality provides

$$c(H) \leq c(W).$$

Therefore,

$$c(H) \leq 2 \cdot c(H^*).$$
The TSP problem for an arbitrary weight function \(c \) is intractable.

Theorem 3 Let \(p \geq 1 \). If \(P \neq NP \), then there is no polynomial-time \(p \)-approximation algorithm for the TSP problem.

Proof. W.l.o.g. assume \(p \in \mathbb{N} \).

Suppose that for some \(p \geq 1 \) there exists a polynomial \(p \)-approx. algorithm \(A \).

We show how the algorithm \(A \) can be applied to solve the HC problem in polynomial time.

Let \(G = (V, E) \) be an instance for the HC problem. Construct a complete graph \(G' = (V, E') \) with the following weight function:

\[
c(u, v) = \begin{cases}
1, & \text{if } (u, v) \in E \\
p|V| + 1, & \text{otherwise}
\end{cases}
\]

\(G \) is Hamiltonian \(\Rightarrow \) \(G' \) contains a Ham. cycle of weight \(|V| \).
\(G \) is not Hamiltonian \(\Rightarrow \) \(G' \) has a Ham. cycle of weight

\[
\geq (p|V| + 1) + (|V| - 1) > p|V|.
\]

We apply \(A \) to the instance \((G', c)\). Then \(A \) constructs a cycle of length no more than \(p \) times longer than the optimal one. Hence:

\(G \) is Hamiltonian \(\Rightarrow A \) constructs a cycle in \(G \) of length \(\leq p|V| \).
\(G \) is not Hamiltonian \(\Rightarrow A \) constructs a cycle in \(G' \) of length \(> p|V| \).

Comparing the length of the cycle in \(G' \) with \(p|V| \) we can recognize whether \(G \) is Hamiltonian or not in polynomial time, so \(P=NP \). \(\Box \)
2c. Scheduling

Let J_1, \ldots, J_n be tasks to be performed on m identical processors M_1, \ldots, M_m.

Assumptions:

- The task J_j has duration $p_j > 0$ and must not be interrupted.
- Each processor M_i can execute only one task in a time.

The problem: construct a schedule

$$\Sigma : \{J_j\}_{j=1}^n \mapsto \{M_i\}_{i=1}^m$$

that provides a fastest completion of all tasks.

Theorem 4 (Graham '66). There exists an $(2 - 1/m)$ approximation scheduling algorithm.

Proof:
Assume the tasks are listed in some order.

Heuristics G: as soon as some processor becomes free, assign to it the next task from the list.
Denote by s_j and e_j the start- and end-times of the tasks J_j in the heuristics G. Let J_k be the task completed last. Then no processor is free at time s_k. This implies $m \cdot s_k$ does not exceed the total duration of all other tasks, i.e.

$$m \cdot s_k \leq \sum_{j \neq k} p_j. \quad (1)$$

For the running time C_n^* of the optimal schedule one has:

$$C_n^* \geq \frac{1}{m} \cdot \sum_{j=1}^{n} p_j. \quad (2)$$

$$C_n^* \geq p_k \quad (3)$$

The inequality (2) follows from the fact that if there exists a schedule of time complexity $C' < \frac{1}{m} \cdot \sum_{j=1}^{n} p_j$ then for the total duration P of all tasks one has $P = \sum_{j=1}^{n} p_j \leq mC' < \sum_{j=1}^{n} p_j$, which is a contradiction.

The heuristics G provides:

$$C_n^G = e_k = s_k + p_k$$

$$\leq \frac{1}{m} \cdot \sum_{j \neq k} p_j + p_k \quad \text{by (1)}$$

$$= \frac{1}{m} \cdot \sum_{j=1}^{n} p_j + \left(1 - \frac{1}{m}\right) p_k$$

$$\leq C_n^* + \left(1 - \frac{1}{m}\right) C_n^* \quad \text{by (2) & (3)}$$

$$= \left(2 - \frac{1}{m}\right) C_n^*. \quad \square$$
A better approximation can be obtained by following the **LPT Rule** (Longest Processing Time):
Sort the tasks w.r.t. p_i in non-increasing order and assign the next task from the sorted list to a processor that becomes free earliest.

Theorem 5 It holds
\[
C_n^{\text{LPT}} \leq (3/2 - 1/(2m)) C_n^*.
\]

Proof:
Let J_k be the task completed last. Since time s_k all processors are busy, there is a set S of m tasks that are processed at that time. For any $J_j \in S$ one has $p_j \geq p_k$ (the LPT heuristics).

Now, if $p_k > (1/2) C_n^*$, then \exists $m+1$ tasks of length at least $(1/2) C_n^*$ each, which is a contradiction (no schedule just for these tasks cannot be completed in time C_n^*).

Hence, $p_k \leq (1/2) C_n^*$. One has
\[
C_n^{\text{LPT}} = s_k + p_k
\leq \frac{1}{m} \cdot \sum_{j \neq k} p_j + p_k
\leq \frac{1}{m} \cdot \sum_{j=1}^{n} p_j + \left(1 - \frac{1}{m}\right) p_k
\leq C_n^* + \left(1 - \frac{1}{m}\right)(1/2) C_n^*
\leq \left(\frac{3}{2} - \frac{1}{2m}\right) C_n^*. \quad \square
A deeper analysis leads to even better bound for the LPT heuristics.

Theorem 6 It holds:

\[C_{n}^{LPT} \leq (4/3 - 1/(3m))C_{n}^{*}. \]

Proof:

Let \(J_k \) be the task completed last in the LPT schedule \(S_n \).

Assume \(p_k \leq C_{n}^{*}/3 \). Then, similarly to the proof of the last theorem,

\[
C_{n}^{LPT} \leq (1/m) \sum_{j=1}^{n} p_j + (1 - 1/m)p_k \\
\leq C_{n}^{*} + (1 - 1/m)C_{n}^{*}/3 \\
= (4/3 - 1/(3m))C_{n}^{*}.
\]

Assume \(p_k > C_{n}^{*}/3 \). Construct the reduced schedule \(S_k \) for the tasks \(J_1, \ldots, J_k \) by dropping the tasks \(J_{k+1}, \ldots, J_n \) from \(S_n \). Then

\[C_{k}^{LPT} = C_{n}^{LPT} \text{ (definition of } J_k \text{)}. \]

Each processor got at most 2 tasks to perform in the optimal schedule \(C_{k}^{*} \) for \(J_1, \ldots, J_k \) (if some got 3, say \(p_i, p_j, p_l \), then \(p_i + p_j + p_l \geq 3p_k > C_{n}^{*} \geq C_{k}^{*} \)).

Therefore \(k \leq 2m \). In this case the schedule \(S_k \) for \(J_1, \ldots, J_k \) provided by the LPT heuristics is optimal. But then \(S_n \) is optimal for \(J_1, \ldots, J_n \) because

\[C_{n}^{*} \geq C_{k}^{*} = C_{k}^{LPT} = C_{n}^{LPT} \geq C_{n}^{*}. \]
2d. The Set-Cover Problem

Instance: A finite set X and a collection of its subsets \mathcal{F} such that

\[\bigcup_{S \in \mathcal{F}} S = X. \]

Problem: Find a minimum set $C \subseteq \mathcal{F}$ that covers X.

![Figure 3: An instance of the Set-Cover problem](image)

Remark 2 The Set-Cover problem is NPC

(Reduction from VC problem. Both problems can be formulated as vertex-covering problems in bipartite graphs. The bipartition sets for Set-Cover graph are formed by the sets X and \mathcal{F}. The bipartition sets for VC graph for $G = (V, E)$ are formed by the sets V and E).
Algorithm 3 \textsc{Greedy-Set-Cover}(X, \mathcal{F});

\begin{align*}
U & := X \\
C & := \emptyset \\
\text{while } U \neq \emptyset & \text{ do } \text{Choose } S \in \mathcal{F} \text{ with } |S \cap U| \rightarrow \max \\
& \quad U := U - S \\
& \quad C := C \cup \{S\} \\
\text{return } C
\end{align*}

Since the while -loop is executed at most \(\min\{|X|, |\mathcal{F}|\}\) times and each its iteration requires \(O(|X| \cdot |\mathcal{F}|)\) computations, the running time of \textsc{Greedy-Set-Cover} is \(O(|X| \cdot |\mathcal{F}| \cdot \min\{|X|, |\mathcal{F}|\})\).
Theorem 7 The Greedy-Set-Cover is a polynomial time \(\rho(n) \)-approximation algorithm, where \(\rho(n) = H(\max\{|S| \mid S \in \mathcal{F}\}) \) and \(H(d) = \sum_{i=1}^{d} (1/i) \).

Proof. Let \(C \) be the set cover constructed by the Greedy-Set-Cover algorithm and let \(C^\ast \) be a minimum cover.

Let \(S_i \) be the set chosen at the \(i \)-th execution of the while-loop. Furthermore, let \(x \in X \) be covered for the first time by \(S_i \). We set the weight \(c_x \) of \(x \) as follows:

\[
c_x = \frac{1}{|S_i - (S_1 \cup \cdots \cup S_{i-1})|}.
\]

One has:

\[
|C| = \sum_{x \in X} c_x \leq \sum_{S \in C^\ast} \sum_{x \in S} c_x.
\] (4)

We will show later that for any \(S \in \mathcal{F} \)

\[
\sum_{x \in S} c_x \leq H(|S|).
\] (5)

From (4) and (5) one gets:

\[
|C| \leq \sum_{S \in C^\ast} H(|S|) \leq |C^\ast| \cdot H(\max\{|S| \mid S \in \mathcal{F}\}),
\]

which completes the proof of the theorem.

To show (5) we define for a fixed \(S \subseteq \mathcal{F} \) and \(i \leq |C| \)

\[
u_i = |S - (S_1 \cup \cdots \cup S_i)|,
\]

that is, \# of elements of \(S \) which are not covered by \(S_1, \ldots, S_i \).
Let $u_0 = |S|$ and k be the minimum index such that $u_k = 0$. Then $u_{i-1} \geq u_i$ and $u_{i-1} - u_i$ elements of S are covered for the first time by S_i for $i = 1, \ldots, k$.

One has:

$$\sum_{x \in S} c_x = \sum_{i=1}^{k} (u_{i-1} - u_i) \cdot \frac{1}{\left| S_i - (S_1 \cup \cdots \cup S_{i-1}) \right|}.$$

Since for any $S \in \mathcal{F} \setminus \{S_1, \ldots, S_{i-1}\}$

$$|S_i - (S_1 \cup \cdots \cup S_{i-1})| \geq |S - (S_1 \cup \cdots \cup S_{i-1})| = u_{i-1}$$

due to the greedy choice of S_i, we get:

$$\sum_{x \in S} c_x \leq \sum_{i=1}^{k} (u_{i-1} - u_i) \cdot \frac{1}{u_{i-1}}.$$

Since for any integers a, b with $a < b$ it holds:

$$H(b) - H(a) = \sum_{i=a+1}^{b} (1/i) \geq (b - a) \cdot (1/b),$$

we get a telescopic sum:

$$\sum_{x \in S} c_x \leq \sum_{i=1}^{k} (H(u_{i-1}) - H(u_i))$$

$$= H(u_0) - H(u_k) = H(u_0) - H(0)$$

$$= H(u_0) = H(|S|).$$

which completes the proof of (5).

\[\square\]

Corollary 1 Since $H(d) \leq \ln d + 1$, the Greedy-Set-Cover algorithm has the approximation rate $(\ln |X| + 1)$.

16
2e. The Maximum Set-Cover-Problem

Instance: A finite set X, a weight function $w : X \mapsto \mathbb{R}$, a collection F of subsets of X and $k \in \mathbb{IN}$.

Problem: Find a collection $C \subseteq F$ of subsets with $|C| = k$ such that $\sum_{x \in C} w(x)$ is maximum.

Algorithm 4 \texttt{MAXIMUM-COVER}(X, F, w);

$U := X$
$C := \emptyset$

\textbf{for } $i := 1$ \textbf{ to } k \textbf{ do}

Choose $S \in F$ with $w(S \cap U) \rightarrow \max$
$U := U - S$
$C := C \cup S$

\textbf{return } C

Theorem 8 The \texttt{MAXIMUM-COVER} is a polynomial time $(1 - 1/e)^{-1}$-approximation algorithm ($(1 - 1/e)^{-1} \approx 1.58$).

Proof.

Let C be the set constructed by the algorithm and let C^* be the optimal solution. Furthermore, let S_i be the set chosen at step i of the algorithm.
The greedy choice of S_l implies:

$$w\left(\bigcup_{i=1}^{l} S_i\right) - w\left(\bigcup_{i=1}^{l-1} S_i\right) \geq \frac{w(C^*) - w\left(\bigcup_{i=1}^{l-1} S_i\right)}{k}, \quad l = 1, \ldots, k. \quad (6)$$

Indeed, for any subset $A \subseteq X$, there exists a set $S \in C^*$ with

$$w(S - A) \geq w(C^* - A)/k$$

(if for any $S \in C^*$ the inverse inequality is satisfied, then $\sum_{S \in C^*} w(S - A) < k \cdot w(C^* - A)/k = w(C^* - A)$, which is a contradiction since not the whole part of $w(C^*)$ outside of A is covered).

Note that $w(C^* - A) \geq w(C^*) - w(A)$ and apply this observation for $A = \bigcup_{i=1}^{l-1} S_i$. By the greedy choice of S_l one has $w(S_l - \bigcup_{i=1}^{l-1} S_i) \geq w(S - \bigcup_{i=1}^{l-1} S_i)$ for any $S \subseteq X$. So,

$$w\left(\bigcup_{i=1}^{l} S_i\right) - w\left(\bigcup_{i=1}^{l-1} S_i\right) = w(S_l - \bigcup_{i=1}^{l-1} S_i)$$

$$\geq w(S - \bigcup_{i=1}^{l-1} S_i)$$

$$\geq w(C^* - \bigcup_{i=1}^{l-1} S_i)/k$$

$$\geq \frac{w(C^*) - w\left(\bigcup_{i=1}^{l-1} S_i\right)}{k}.$$

We show by induction on l:

$$w\left(\bigcup_{i=1}^{l} S_i\right) \geq \left(1 - (1 - 1/k)^l\right) \cdot w(C^*).$$

It is true for $l = 1$, since $w(S_1) \geq w(C^*)/k$ follows from (6).
For \(l \geq 1 \) one has:

\[
\begin{align*}
w(\bigcup_{i=1}^{l+1} S_i) &= w(\bigcup_{i=1}^{l} S_i) + w(\bigcup_{i=1}^{l+1} S_i) - w(\bigcup_{i=1}^{l} S_i) \\
&\geq w(\bigcup_{i=1}^{l} S_i) + \frac{w(C^*) - w(\bigcup_{i=1}^{l} S_i)}{k} \\
&= (1 - 1/k) \cdot w(\bigcup_{i=1}^{l} S_i) + w(C^*)/k \\
&\geq \left(1 - \frac{1}{k}\right) \left(1 - \left(1 - \frac{1}{k}\right)^l\right) \cdot w(C^*) + \frac{w(C^*)}{k} \\
&= \left(1 - (1 - 1/k)^{l+1}\right) \cdot w(C^*),
\end{align*}
\]

so the induction goes through. For \(l = k \) we get:

\[
w(C^*) \geq \left(1 - (1 - 1/k)^k\right) \cdot w(C^*) > (1 - 1/e) \cdot w(C^*).
\]

The last inequality follows from

\[
\begin{align*}
(1 - 1/k)^k &= (1 + (1/(-k)))^{(-k)} \\
&= (1 + 1/n)^{-n} \quad \text{(for } n = -k) \\
&= ((1 + 1/n)^n)^{-1} \\
&\leq e^{-1} = 1/e.
\end{align*}
\]

Remark 3 Sometimes it is difficult to choose the set \(S \) according to the algorithm. However, if one one would be able to make a choice for \(S \) which differs from the optimum in a factor \(\beta \) \((\beta < 1)\) then the same algorithm provides the approx. ratio \((1 - 1/e^\beta)^{-1}\).
2f. The **Independent-Set** Problem

Instance: An undirected graph \(G = (V, E) \).

Problem: Find a maximum independent set.

For \(v \in V \) and \(n = |V| \) define \(\delta = \frac{1}{n} \sum_{v \in V} \deg(v) \) and

\[
N(v) = \{ u \in V \mid \text{dist}(u, v) = 1 \}.
\]

Algorithm 5 \textsc{Independent-Set}(\(G \));

\[
S := \emptyset
\]

while \(V(G) \neq \emptyset \) do

Find \(v \in V \) with \(\deg(v) = \min_{u \in V} \deg(u) \)

\[
S := S \cup \{ v \}
\]

\[
G := G - (v \cup N(v))
\]

return \(S \)

Theorem 9 The **Independent-Set** algorithm computes an independent set \(S \) of size \(q \geq n/(\delta + 1) \).

Proof. Let \(v_i \) be the vertex chosen at step \(i \) and let \(d_i = \deg(v_i) \). One has: \(\sum_{i=1}^{q} (d_i + 1) = n \). Since at step \(i \) we delete \(d_i + 1 \) vertices of degree at least \(d_i \) each, for the sum of degrees \(S_i \) of the deleted vertices one has \(S_i \geq d_i(d_i + 1) \). Therefore,

\[
\delta n = \sum_{v \in V} \deg(v) \geq \sum_{i=1}^{q} S_i \geq \sum_{i=1}^{q} d_i(d_i + 1).
\]

This implies

\[
\delta n + n \geq \sum_{i=1}^{q} (d_i(d_i + 1) + (d_i + 1)) = \sum_{i=1}^{q} (d_i + 1)^2 \geq \frac{n^2}{q}
\]

\[
\Rightarrow q \geq \frac{n}{\delta + 1}.
\]
2g. The **SUBSET-SUM** Problem

Decision problem:

Instance: A set \(S = \{x_1, \ldots, x_n\} \) of integers and \(t \in \mathbb{N} \).

Question: Is there a subset \(I \subseteq \{1, \ldots, n\} \) with \(\sum_{i \in I} x_i = t \) ?

Optimization problem:

Instance: A set \(S = \{x_1, \ldots, x_n\} \) of integers and \(t \in \mathbb{N} \).

Problem: Find a subset \(I \subseteq \{1, \ldots, n\} \) with \(\sum_{i \in I} x_i \leq t \) and \(\sum_{i \in I} x_i \) maximum.

For \(A \subseteq S \) and \(s \in \mathbb{N} \) define

\[
A + s = \{a + s \mid a \in A\}.
\]

Let \(P_i \) be the set of all partial sums of \(\{x_1, \ldots, x_i\} \). One has

\[
P_i = P_{i-1} \cup (P_{i-1} + x_i).
\]

Algorithm 6 **EXACT-SUBSET-SUM** \((S, t)\);

\[
n := |S|
\]

\[
L_0 := \langle 0 \rangle
\]

\[
\text{for } i = 1 \text{ to } n \text{ do}
\]

\[
L_i := \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
\]

\[
L_i := L_i - \{x \in L_i \mid x > t\}
\]

\[
\text{return the maximal element of } L_n
\]

It can be shown by induction on \(i \) that \(L_i \) is the sorted set

\[
\{x \in P_i \mid x \leq t\}.
\]
Polynomial Approximation Scheme

Let $L = \langle y_1, \ldots , y_m \rangle$ be a sorted list and $0 < \delta < 1$. We construct a list $L' \subseteq L$ such that:

$$\forall y \in L \ \exists z \in L' \text{ with } \frac{y - z}{z} \leq \delta \quad \text{(i.e. } y/(1 + \delta) \leq z \leq y),$$

and $|L'|$ is minimum.

The element $z \in L'$ will represent $y \in L$ with accuracy δ.

For example, if

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

then trimming of it with $\delta = 0.1$ results in

$$L' = \langle 10, 12, 15, 20, 23, 29 \rangle$$

with 11 represented by 10, 21 & 22 by 20, and 24 by 23.

Algorithm 7 $\text{TRIM}(L, \delta)$;

$m := |L|$
$L' := \langle y_1 \rangle$
$last := y_1$

for $i = 2$ to m do

if $y_i/(1 + \delta) > last$ then

APPEND(L', y_i)

last := y_i

return L'
Algorithm 8 Approx-Subset-Sum(S, t, ϵ);
$n := |S|$
$L_0 := \langle 0 \rangle$
for $i = 1$ to n
do
$L_i := \text{Merge-Lists}(L_{i-1}, L_{i-1} + x_i)$
$L_i := \text{Trim}(L_i, \epsilon/2n)$
$L_i := L_i - \{x \in L_i \mid x > t\}$
end do
return The maximal element of L_n

Theorem 10 Approx-Subset-Sum is a fully polynomial time approximation scheme for the Subset-Sum problem.

Proof.
The output of the algorithm is the value z^* which is a sum of elements in the subset S. We show that $y^*/z^* \leq 1 + \epsilon$, where y^* is the optimal solution.

By induction on i:

\[\forall y \in P_i \text{ with } y \leq t \; \exists z \in L_i \text{ with } y/(1 + \epsilon/2n)^i \leq z \leq y. \]

Let $y^* \in P_n$ be the optimal solution. Then $\exists z \in L_n$ with

\[y^*/(1 + \epsilon/2n)^n \leq z \leq y^*. \]

The output of the algorithm is the largest z.

Since the function $(1 + \epsilon/2n)^n$ is monotonically increasing on n,

\[(1 + \epsilon/2n)^n \leq e^{\epsilon/2} \leq 1 + \epsilon/2 + (\epsilon/2)^2 \leq 1 + \epsilon \Rightarrow y^* \leq z(1 + \epsilon). \]
Finally, we show that \textsc{Approx-Subset-Sum} terminates in a polynomial time. For this we get a bound for L_i.

After iteration of the for-loop, for any two consecutive elements $z_{i+1}, z_i \in L_i$ one has:

$$\frac{z_{i+1}}{z_i} \geq 1 + \epsilon/2n.$$

If $L = \langle 0, z_1, \ldots, z_k \rangle$ with $0 < z_1 < z_2 < \cdots < z_k \leq t$, then

$$t \geq \frac{z_k}{z_1} = \frac{z_k}{z_{k-1}} \cdot \frac{z_{k-1}}{z_{k-2}} \cdots \frac{z_2}{z_1} \geq (1 + \epsilon/2n)^{k-1}$$

since $z_1 \geq 1$. This implies $k - 1 \leq \log_{(1+\epsilon/2n)} t$.

Taking into account $\frac{x}{1+x} \leq \ln(1+x)$ for $x > -1$, we get

$$|L_i| = k + 1$$

$$\leq \log_{(1+\epsilon/2n)} t + 2$$

$$= \frac{\ln t}{\ln(1+\epsilon/2n)} + 2$$

$$\leq \frac{2n(1+\epsilon/2n)\ln t}{\epsilon} + 2$$

$$\leq \frac{4n\ln t}{\epsilon} + 2.$$

This bound is polynomial in terms of n and $1/\epsilon$. \square
2h. 3-Coloring

Theorem 11 Let G be a graph with $\chi(G) \leq 3$. There exists a polynomial algorithm that colors G with $O(\sqrt{n})$ colors.

Proof: We will use the following observations

- If $\chi(G) = 2$ (i.e. G is bipartite), then G can be colored in 2 colors in polynomial time.

- If G is a graph with max. vertex degree Δ, then G can be colored in $\Delta + 1$ colors in polynomial time (by a greedy method).

W.l.o.g. we assume $\chi(G) = 3$ and $\Delta(G) \geq \sqrt{n}$.

For $v \in V(G)$ denote $N(v) = \{u \in V \mid \text{dist}_G(u, v) = 1\}$.

$\chi(G) = 3 \Rightarrow$ the subgraph induced by $G[N(v)]$ is bipartite $\forall v \in V$ and 2-colorable in polynomial time.

\Rightarrow the subgraph induced by $G[v \cup N(v)]$ is 3-colorable in polynomial time.

Algorithm 9 3-Coloring;

while $\Delta(G) \geq \sqrt{n}$ do

- Find $v \in V(G)$ with $\text{deg}(v) \geq \sqrt{n}$
- Color $G[v \cup N(v)]$ with 3 colors (by using a new set of 3 colors for every v)
- Set $G := G - (v \cup N(v))$

Color G with $\Delta(G) + 1$ (new) colors.

Obviously, the running time is polynomial in n and the number of used colors is $\leq 3 \frac{n}{\sqrt{n}} + \sqrt{n} + 1 = O(\sqrt{n})$. □
3. Weighted Independent Set and Vertex Cover

Let \(G = (V, E) \) be an undirected graph with vertex weights \(w_j, j = 1, \ldots, |V| = n \). Consider the following IP for the weighed VC problem:

\[
\begin{align*}
\text{Minimize} & \quad z = \sum_{j=1}^{n} w_j x_j \\
\text{subject to} & \quad x_i + x_j \geq 1 \quad \text{for every edge } (i, j) \in E \\
& \quad x_j \in \{0, 1\} \quad \text{for every vertex } j \in V
\end{align*}
\]

We relax the restriction \(x_j \in \{0, 1\} \) to \(0 \leq x_j \leq 1 \) and get an LP approximation. The LP provides a lower bound for the IP. That is, if \(C^* \) is an optimal VC and \(x^* = (x_1^*, \ldots, x_n^*) \) and \(Z^* \) is a solution to the LP, then

\[z^* \leq w(C^*). \]

Since the complement of VC is an IS, for its optimal solution \(S^* \) we get

\[w(S^*) = \sum_{i=1}^{n} w_i - w(C^*) \leq \sum_{i=1}^{n} w_i - z^*. \]

We partition \(V \) in 4 subsets:

\[
\begin{align*}
P &= \{ j \in V \mid x_j^* = 1 \} \\
Q' &= \{ j \in V \mid 1/2 \leq x_j^* < 1 \} \\
Q'' &= \{ j \in V \mid 0 < x_j^* < 1/2 \} \\
R &= \{ j \in V \mid x_j^* = 0 \}
\end{align*}
\]
For a set $A \subseteq V_G$ denote $w(A) = \sum_{v \in A} w(v)$.

Theorem 12 There exist a polynomial approximation algorithm for the weighted VC with approximation rate 2.

Proof.
We solve the LP and let $C = P \cup Q'$. One has

$$w(C^*) \geq z^* = \sum_{j=1}^{n} w_j x_j$$

$$= \sum_{j \in P \cup Q' \cup Q''} w_j x_j \geq \sum_{j \in P \cup Q'} w_j x_j$$

$$= \sum_{x_j \geq 1/2} w_j x_j \geq \frac{1}{2} \sum_{x_j \geq 1/2} w_j$$

$$= \frac{1}{2} w(C').$$

Corollary 2 For the minimum weight vertex cover C^* one has

$$w(C^*) \geq w(P) + w(Q')/2.$$

Corollary 3 For the maximum weight indep. set S^* one has

$$w(S^*) \leq w(R) + w(Q')/2 + w(Q'').$$

Indeed,

$$w(S^*) = w(G) - w(C^*) = w(G) - (w(P) + w(Q') + w(Q''))$$

$$= w(R) + \sum_{j \in Q'} w_j (1 - x_j) + \sum_{j \in Q''} w_j (1 - x_j)$$

$$\leq w(R) + \frac{1}{2} w(Q') + w(Q'').$$
Theorem 13 Assume $\chi = \chi(G) \geq 2$ and the optimal coloring for G is known. Then there exist polynomial approxim. algorithms for IS (resp. VC) with approxim. rate $\chi/2$ (resp. $2 - 2/\chi$).

Proof. First, we solve the LP to find the sets P, Q', Q'', R. Let F_i be the set of vertices with color $i, i = 1, \ldots, \chi$. Each F_i is an independent set. Denote $S = F_j \cap Q'$ with $|F_j| = \max_i |F_i \cap Q'|$. Then $w(S) \geq w(Q')/\chi$. Note that $R \cup Q''$ is an IS and there are no edges between R and Q' (so as between R and S'), consider LP restrictions to check this. Hence, $R \cup Q'' \cup S$ is an IS and

\[
\begin{align*}
 w(R \cup Q'' \cup S) &\geq w(R) + w(Q'') + \frac{1}{\chi}w(Q') \\
 &\geq \frac{2}{\chi} \left(w(R) + w(Q'') + \frac{1}{2}w(Q') \right) \\
 &\geq \frac{2}{\chi}w(S^*) \quad \text{ (by Coro. (3)).}
\end{align*}
\]

Furthermore, $C = V \setminus (R \cup Q'' \cup S)$ is a vertex cover and

\[
\begin{align*}
 w(C) &= w(G) - w(R \cup Q'' \cup S) \\
 &= w(P) + (w(Q') - w(S)) \\
 &\leq w(P) + \frac{\chi - 1}{\chi}w(Q') \\
 &\leq \frac{2(\chi - 1)}{\chi} \left(w(P) + \frac{1}{2}w(Q') \right) \\
 &\leq \left(2 - \frac{2}{\chi} \right) w(C^\ast) \quad \text{ (by Coro. (2)).}
\end{align*}
\]
If G is a connected graph of max-degree $\Delta > 3$ and $G \neq K_{\Delta+1}$, then $\chi(G) \leq \Delta$ (Brooks Theorem). Therefore,

Corollary 4 There exist polynomial approx. algorithms for IS (resp. VC) with approx. rate $\Delta/2$ (resp. $2 - 2/\Delta$).

Since $\chi(G) = 4$ for any planar graph, we get

Corollary 5 For planar graphs there exist polynomial approx. algorithms for IS (resp. VC) with approx. rate 2 (resp. $3/2$).