1 Flow Networks

1. Introduction

2. Maximum Flow
 a. The Ford-Fulkerson method
 b. The MAXFLOW-MINCUT theorem
 c. The Edmonds-Karp algorithm

3. Applications
 a. Connectivity of graphs
 b. Matchings in bipartite graphs
1. Introduction

Definition 1 A network $N = (V, E, s, t)$ is an oriented graph (V, E) with a weight function $c : E \mapsto \mathbb{R} \geq 0$ and two special nodes $s, t \in V$ (source and sink).

If $(u, v) \notin E$ we extend $c(u, v)$ by setting $c(u, v) = 0$.

Definition 2 Let $N = (V, E, s, t)$ be a network. A flow in N is a function $f : V \times V \mapsto \mathbb{R}$, such that:

- $f(u, v) \leq c(u, v)$ for any $u, v \in V$. (capacity constraint)
- $f(u, v) = -f(v, u)$ for any $u, v \in V$. (symmetry)
- $\sum_{v \in V} f(u, v) = 0$ for any $u \in V - \{s, t\}$. (flow conservation)

The number $|f| = \sum_{v \in V} f(s, v)$ is called the value on f.

Therefore, $f(u, u) = 0$ and if $(u, v) \notin E \& (v, u) \notin E \Rightarrow f(u, v) = f(v, u) = 0$.

![Figure 1: Example of a flow network](image)
The Problem:
Given a network N construct a flow f for N with maximum value $|f|$ (maximal flow). Important ideas:

- The residual network
- The augmenting path
- The minimum cut

Definition 3 Let $N = (V, E, s, t)$ be a network with a flow f. For each $u, v \in V$ put

$$c_f(u, v) = c(u, v) - f(u, v)$$

and define the residual network $N_f = (V, E_f, s, t)$, where

$$E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}$$

![Figure 2: Residual network and augmenting path](image)
Lemma 1 Let \(N = (V, E, s, t) \) a network with flow \(f \) and let \(f' \) be a flow on \(N_f \). Then \(f + f' \) is a flow on \(N \) and \(|f + f'| = |f| + |f'| \).

Proof:
Obviously, it holds: \((f+f')(u,v) = -(f+f')(v,u) \):
\[
(f+f')(u,v) = f(u,v) + f'(u,v) \\
= -f(v,u) - f'(v,u) \\
= -(f(v,u) + f'(v,u)) \\
= -(f+f')(v,u).
\]

Since \(f(u,v) \leq c(u,v) \) and \(f'(u,v) \leq c_f(u,v) \), one has:
\[
(f+f')(u,v) = f(u,v) + f'(u,v) \\
\leq f(u,v) + (c(u,v) - f(u,v)) = c(u,v).
\]

Therefore: \(u \in V - \{s,t\} \)
\[
\sum_{v \in V} (f+f')(u,v) = \sum_{v \in V} (f(u,v) + f'(u,v)) \\
= \sum_{v \in V} f(u,v) + \sum_{v \in V} f'(u,v) = 0.
\]

Finally:
\[
|f + f'| = \sum_{v \in V} (f(s,v) + f'(s,v)) \\
= \sum_{v \in V} f(s,v) + \sum_{v \in V} f'(s,v) = |f| + |f'|.
\]
2a. The Ford-Fulkerson method

Definition 4 Let \(N = (V, E, s, t) \) be a network with a flow \(f \). The **augmenting path** \(p \) is an oriented path \(s \rightsquigarrow t \) in \(N_f \). We put \(c_f(p) := \min \{ c_f(u, v) \mid (u, v) \in E(p) \} \).

Lemma 2 Let \(N = (V, E, s, t) \) be a network with a flow \(f \) and let \(p \) be an augmenting path in \(N_f \). Define:

\[
 f_p(u, v) = \begin{cases}
 c_f(p), & \text{if } (u, v) \in E(p), \\
 -c_f(p), & \text{if } (v, u) \in E(p), \\
 0, & \text{otherwise}
\end{cases}
\]

Then \(f_p \) is a flow on \(N_f \) and \(|f_p| = c_f(p) > 0 \).

Corollary 1 Let \(N = (V, E, s, t) \) be a network with a flow \(f \) and let \(p \) be an augmenting path in \(N_f \). Furthermore, let \(f' = f + f_p \). Then \(f' \) is a flow with \(|f'| > |f| \).

A general method:

1. Set \(f := 0 \).
2. while \exists \text{augmenting path } p \text{ in } N_f \\
 \quad f := f + f_p.
3. return \(f \)
2b. The MAXFLOW-MINCUT theorem

Definition 5 A cut \((S, T)\) in a network \(N = (V, E, s, t)\) is a partition of the vertex set \(V' = S \cup T\), such that \(s \in S\), \(t \in T\) and \(S \cap T = \emptyset\).

We define:

\[
\begin{align*}
 f(S, T) &= \sum_{u \in S} \sum_{v \in T} f(u, v) \\
 c(S, T) &= \sum_{u \in S} \sum_{v \in T} c(u, v).
\end{align*}
\]

![Figure 3: An \((S, T)\)-cut in a network](image)

Lemma 3 Let \(N = (V, E, s, t)\) be a network with a flow \(f\) and let \((S, T)\) be a cut in \(N\). Then \(f(S, T) = |f|\).

Proof:

\[
\begin{align*}
 f(S, T) &= \sum_{u \in S} \sum_{v \in T} f(u, v) = \sum_{u \in S} \sum_{v \in V} f(u, v) - \sum_{u \in S} \sum_{v \in S} f(u, v) \\
 &= \sum_{u \in S} \sum_{v \in V} f(u, v) \\
 &= \sum_{v \in V} f(s, v) + \sum_{u \in S-s} \sum_{v \in V} f(u, v) \\
 &= \sum_{v \in V} f(s, v) = |f|. \quad \square
\end{align*}
\]
Theorem 1 (MAXFLOW-MINCUT THEOREM)

Let $N = (V, E, s, t)$ be a network with a flow f. The following statements are equivalent:

1. f is a flow with maximum value $|f|$.
2. The network N_f has no augmenting path.
3. $|f| = c(S, T)$ for some cut (S, T) of N.

Proof:

(1)\Rightarrow(2):

Assume N_f contains an augmenting path p.

(Corollary 1) $\Rightarrow |f + f_p| > |f|$, a contradiction

(2)\Rightarrow(3):

Denote:

$$S = \{v \in V \mid \exists \text{path } s \leadsto v \text{ in } N_f\}, \quad T = V - S.$$

Then (S, T) is a cut and $f(u, v) = c(u, v)$ for $u \in S$ and $v \in T$.

(Lemma 3) $\Rightarrow |f| = f(S, T) = c(S, T)$.

(3)\Rightarrow(1): Let (S, T) be a cut.

$$|f| = f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) \leq \sum_{u \in S} \sum_{v \in T} c(u, v) = c(S, T).$$

Since $[|f| = c(S, T)] \Rightarrow |f|$ is maximum. \square
2c. The Ford-Fulkerson algorithm

Algorithm 1 \(\text{FORD-FULKERSON}(N, s, t); \)

```
for all \((u, v) \in E\) do
  \(f[u, v] := 0\)
  \(f[v, u] := 0\)

while (\exists \text{augmenting path } p \text{ in } N_f) do
  \(c_f(p) := \min\{c_f(u, v) \mid (u, v) \in p\}\)
  for all \((u, v) \in p\) do
    \(f[u, v] := f[u, v] + c_f(p)\)
    \(f[v, u] := -f[u, v]\)
```

If all the costs \(c(u, v)\) are integer numbers then the running time of \(\text{FORD-FULKERSON}\) is \(O(|E| \cdot |f^*|)\), where \(|f^*|\) is the value of the maximum flow constructed by the algorithm.

![Figure 4: A very slow termination of the basic method](image)
Example 1

Figure 5: Execution of the basic Ford-Fulkerson algorithm
2c. The Edmonds-Karp algorithm

Let all the costs \(c(u, v) \) be rational. Furthermore, assume that any augmenting path \(p \) constructed by \textsc{Ford-Fulkerson} is a shortest path \(s \leadsto t \) in \(N_f \) constructed by the DFS. So implemented Ford-Fulkerson method is called \textsc{Edmonds-Karp} algorithm.

Let \(\delta_f(u, v) \) denote the length of the shortest path \(u \leadsto v \) in \(N_f \) (w.r.t. the weights \(w(e) = 1 \) for every \(e \in E \)).

Lemma 4 After every execution of the \textbf{while} loop in the \textsc{Edmonds-Karp} algorithm the values \(\delta_f(s, v) \) are increasing monotonically for all \(v \in V - \{s, t\} \).

Proof:
Assume the contrary and let \(v \) be the first vertex, s.t. \(\delta_{f'}(s, v) < \delta_f(s, v) \), where the flow \(f' \) is obtained from \(f \) by a single augmentation.

Let \(p = s \leadsto u \rightarrow v \) be a shortest path in \(N_{f'} \), so \((u, v) \in E_{f'} \) and
\[
\delta_{f'}(s, u) = \delta_{f'}(s, v) - 1 \quad (1)
\]
By the choice of \(u \):
\[
\delta_{f'}(s, u) \geq \delta_f(s, u) \quad (2)
\]
We claim \((u, v) \notin E_f\) because otherwise
\[
\delta_f(s, v) \leq \delta_f(s, u) + 1
\leq \delta_{f'}(s, u) + 1 \quad \text{(by (2))}
= \delta_{f'}(s, v) \quad \text{(by (1))}.
\]
Now, \((u, v) \not\in E_f\) and \((u, v) \in E_{f'}\).

\[\Rightarrow \exists \text{shortest path } s \leadsto v \rightarrow u \leadsto t \text{ in } N_f. \]

One has

\[
\delta_f(s, v) = \delta_f(s, u) - 1
\leq \delta_{f'}(s, u) - 1 \quad \text{(by (2))}
= \delta_{f'}(s, v) - 2 \quad \text{(by (1))}
\]

which contradicts to \(\delta_{f'}(s, v) < \delta_f(s, v)\).

\[\square \]

Theorem 2 The number of times the while-loop in the Edmonds-Karp algorithm is executed is \(O(|V| \cdot |E|)\).

Proof:

After each augmentation the distance from \(s\) to at least one vertex strictly increases.

For any \(v \in V - \{s, t\}\) one has \(\delta_f(s, v) \in \{1, \ldots, |E|, \infty\}\), so \(\delta_f(s, v)\) takes on at most \(|E|+1\) values in the coarse of the algorithm.

By L. 4 the \(\delta_f(s, v)\) does not decrease. So the number of times the while-loop is executed does not exceed the number of steps to lift all \(\delta_f(s, v)\) up to their final values. This number does not exceed \(|E| + 1\) for each vertex \(v\), so the total number of steps is not larger than \(|V| \cdot (|E| + 1) = O(|V| \cdot |E|)\).

\[\square \]

Therefore, the running time of the Edmonds-Karp algorithm is \(O(|V| \cdot |E|^2)\).
3a. Connectivity of graphs

Definition 6 An undirected graph $G = (V, E)$ is called κ-connected if for any two its vertices $u, v \in V$ ($u \neq v$) there exist κ vertex disjoint paths $u \leadsto v$.

Definition 7 Let $G = (V, E)$ be a non-oriented graph and $a, b \in V$. A set $S \subseteq V$ is called (a, b) vertex separator, if $\{a, b\} \subset V - S$ and any path $a \leadsto b$ in G contains a vertex of S.

$N(a, b) :=$ minimum size of an (a, b) vertex separator.

$p(a, b) :=$ maximum size of a set of vertex-disjoint paths $a \leadsto b$.

Theorem 3 (Menger’s Theorem)
If $(a, b) \notin E$ then $N(a, b) = p(a, b)$.

Proof: (using flows)
Given $G = (V, E)$, construct the following network $N_G = (V', E', s, t)$:

- $\forall v \in V$: put v', v'' in V' and the edge (v', v'') (internal edges).
 Set: $s = a''$ and $t = b'$.

- $\forall (u, v) \in E$: put (u'', v') and (v'', u') in N_G. (external edges)

Also set:

$$c(u, v) = \begin{cases} 1, & \text{for all internal edges} \\ \infty, & \text{for all external edges} \end{cases}$$
We show that for a maximal flow f from s to t one has:

$$|f| = p(a, b).$$

There exist $p(a, b)$ vertex-disjoint paths $a \leadsto b$ in G:

$$a \leadsto v_1 \leadsto \cdots \leadsto v_l = b.$$

\Rightarrow there exist $p(a, b)$ vertex-disjoint paths $s \leadsto t$ in N_G:

$$s = a'' \leadsto v'_1 \leadsto v''_1 \leadsto \cdots \leadsto v'_l \leadsto v''_l = t$$

$\Rightarrow |f| \geq p(a, b).$

Assume f is a maximal flow in N_G s.t. $f(e) \in \{0, 1\} \ \forall e \in E'$.
\Rightarrow each $s \leadsto t$-path contributes 1 to f
\Rightarrow there exist at least $|f|$ paths, i.e. $p(a, b) \geq |f|$. \hfill \Box

Menger’s Theorem leads to a method for computing $N(a, b)$:

1. Construct the network N_G as in Theorem 3.
2. Find a maximal flow f in N_G from s to t.
3. Find the minimum-size edge-cut C in N_G.
4. Construct corresponding (a, b) vertex separator from C in G.

k vertex connectivity:

For all pairs (a, b) of vertices with $(a, b) \notin E$ compute the minimal vertex separator and find k.

Edge-connectivity of Graphs

Definition 8 A non-oriented graph $G = (V, E)$ is called κ edge-connected if for any two its vertices $u, v \in V$ ($u \neq v$) there exist κ edge-disjoint paths.

Definition 9 Let $G = (V, E)$ be an undirected graph and $a, b \in V$. A set $S \subseteq E$ is called (a, b) edge-separator, if any path $a \leadsto b$ contains an edge of S.

$K(a, b) :=$ minimum size of (a, b)-separator.
$q(a, b) :=$ maximum size of a set of edge-disjoint paths $a \leadsto b$.

Theorem 4 It holds: $K(a, b) = q(a, b)$.

Proof:
Given $G = (V, E)$, construct the network $N_G = (V, E', a, b)$, where for each edge $(u, v) \in E$ there are two oriented edges (a, b) and (b, a). Set the capacity for each edge to be 1.

Let f be a maximal flow in N_G. Then $|f| = q(a, b)$. \square

Theorem 4 leads to computing $K(a, b)$ via computing $q(a, b)$. We apply this Method for all $a, b \in V$ and find the κ edge-connectivity.
3b. Matching in bipartite graphs

Definition 10 Let $G = (V, E)$ be an undirected graph. A set $M \subseteq E$ is called matching if the edges in M have no common vertices. A matching is called maximum if it has a maximum number of edges.

The Problem:
Given a bipartite graph $G = (V_1 \cup V_2, E)$, construct a maximum matching.

Let $N_G = (V', E', s, t)$ be the following network:

- $V' = V_1 \cup V_2 \cup \{s, t\}$
- $E' = \{ (s, u) \mid u \in V_1 \}$
 $\cup \{ (u, v) \mid u \in V_1, v \in V_2, (u, v) \in E \}$
 $\cup \{ (v, t) \mid v \in V_2 \}$
- $c(u, v) = 1$ for every $(u, v) \in E'$

![Figure 6: Maximum matching in bipartite graphs](image)
Theorem 5 Let $G = (V_1 \cup V_2, E)$ be a bipartite graph. For any matching M there is a flow f in N_G with $|f| = |M|$. For any integer-valued flow f in N_G there exists a matching M in G with $|M| = |f|$.

Proof:
Let M be a matching in G. Consider the following flow:

$$f(s,u) = f(u,v) = f(v,t) = 1$$
$$f(u,s) = f(v,u) = f(t,v) = -1$$

for $(u,v) \in M$ and $f(u,v) = 0$ otherwise.

For any $(u,v) \in M$ there exists a path $s \leadsto u \leadsto v \leadsto t$.

Let $S = \{s\} \cup V_1$ and $T = \{t\} \cup V_2$.

Then (S, T) is a cut in N_G and (Lemma 3) $|f| = |M|$.

Let f be an integer-valued flow in N_G. Consider

$$M = \{(u,v) \mid u \in V_1, v \in V_2, f(u,v) > 0\}.$$

Then M is a matching with $|M| = |f|$. \qed
Corollary 2 The size of a maximum matching in G equals to the value of a maximum flow in in N_G.

Proof:
Let M be a maximum matching. Consider the flow f as in the proof of Theorem 5.
Assume f is not maximum. $\Rightarrow \exists$ an integer-valued flow f' in N_G with $|f'| > |f|$.
(Theorem 5) \Rightarrow there is a matching M' in G with

$$|M'| = |f'| > |f| = |M|.$$

So, M is not a maximum matching, a contradiction. \qed
Let $G = (V, E)$ be a graph and $A \subseteq V$. Define:

$$N(A) = \{ v \in V - A \mid (v, w) \in E, ~ w \in A \}.$$

Theorem 6 (P. Hall)

Let $G = (V_1 \cup V_2, E)$ be a bipartite graph. G has a matching M with $|M| = |V_1|$ if and only if for any subset $A \subseteq V_1$ one has:

$$|N(A)| \geq |A|.$$

Proof:

\Rightarrow Obvious.

\Leftarrow Let $|N(A)| \geq |A|$ for any $A \subseteq V_1$. Let f be a maximal integer-valued flow in N_G and $S \subseteq V'$ be the vertices of the residual network which are reachable from s. Then $|f| = c(S, T)$, where $T = V(N_G) - S$.

Let $v \in S \cap V_1$ and $(v, w) \in E(N_G)$. We show $w \in S$.

Assume $w \notin S \Rightarrow f(v, w) = 1$ (otherwise $w \in S$).

$f(s, v) = 0 \Rightarrow \sum_{u \in V(N_G)} f(v, u) \neq 0$, a contradiction.

Hence: $N(S \cap V_1) \subseteq S$. Therefore:

$(v, w) \in E(V_G), v \in S, w \in T \Rightarrow v = s$ or $w = t$.

Since $S \cap V_2 = N(S \cap V_1)$, then:

$$|f| = |V_1 - S| + |N(S \cap V_1)| \geq |V_1 - S| + |S \cap V_1| = |V_1| \geq |f|. $$

(Theorem 5) \Rightarrow G has a matching with $|V_1|$ edges.

Corollary 3 Any regular bipartite graph has a perfect matching.